space
space
austin clean energyenergy conservation, clean energy
  www.austincleanenergy.com
space
space
space
homeglobal warmingaboutsitemapcontact usblogs - energy conservationwsn links
space
Stirling engine
The engine cycle
The Stirling cycle
Engine configurations
Wind Power
Wind energy
Turbine placement & Installation
Ecology and pollution
PV Power (Photovoltaics)
Working of PV Cells
Environmental impacts
Jet Turbine Power
Types of jet engines
Turbojet engines
Gas Turbine
Gas turbines in vehicles
Microturbines
 
 
 
Affilliate Links:
Jlove:
Click here to meet Jewish Singles!
 
Mothernature:
Shop for all-natural products at MotherNature.com
 

Wind Energy

An estimated 1% to 3% of energy from the Sun that hits the earth is converted into wind energy. This is about 50 to 100 times more energy than is converted into biomass by all the plants on Earth through photosynthesis.[citation needed] Most of this wind energy can be found at high altitudes where continuous wind speeds of over 160 km/h (100 mph) occur. Eventually, the wind energy is converted through friction into diffuse heat throughout the Earth’s surface and the atmosphere.

The origin of wind is complex. The Earth is unevenly heated by the sun resulting in the poles receiving less energy from the sun than the equator does. Also the dry land heats up (and cools down) more quickly than the seas do. The differential heating powers a global atmospheric convection system reaching from the Earth’s surface to the stratosphere which acts as a virtual ceiling.

Wind variability and turbine power

The power in the wind can be extracted by allowing it to blow past moving wings that exert torque on a rotor. The amount of power transferred is directly proportional to the density of the air, the area swept out by the rotor, and the cube of the wind speed.

The power P available in the wind is given by:

The mass flow of air that travels through the swept area of a wind turbine varies with the wind speed and air density. As an example, on a cool 15°C (59°F) day at sea level, air density is 1.225 kilograms per cubic metre. An 8 m/s breeze blowing through a 100 meter diameter rotor would move almost 77,000 kilograms of air per second through the swept area.

The kinetic energy of a given mass varies with the square of its velocity. Because the mass flow increases linearly with the wind speed, the wind energy available to a wind turbine increases as the cube of the wind speed. The power of the example breeze above through the example rotor would be about 2.5 megawatts.

As the wind turbine extracts energy from the air flow, the air is slowed down, which causes it to spread out and diverts it around the wind turbine to some extent. Albert Betz, a German physicist, determined in 1919 that a wind turbine can extract at most 59% of the energy that would otherwise flow through the turbine’s cross section. The Betz limit applies regardless of the design of the turbine



Back to Blogs Index

Other Useful Links: Search The Web:
Low cost health care solutions

California lawyer and attorney directory

Chula vista real estate attorneys

San Diego Law Schools

San Diego Business Directory

Internet Marketing Consultants

Legal Commentary Blog

California Unpublished Legal Decisions

Judicial Misconduct Resources

California Apartment Manager

Search Engine Optimization (SEO)

Posting Images Online

City Defense Campaign
Google
             
Web
www.fearnotlaw.com
www.sandiegodirectory.net
www.sandiegohealthdirectory.com
 
Copyright 2007-2009 , Result Oriented Marketing, Inc.
For Further Assistance Visit : www.mcmillanlaw.us and www.fearnotlaw.com